Package: RTextTools 1.4.3
RTextTools: Automatic Text Classification via Supervised Learning
A machine learning package for automatic text classification that makes it simple for novice users to get started with machine learning, while allowing experienced users to easily experiment with different settings and algorithm combinations. The package includes eight algorithms for ensemble classification (svm, slda, boosting, bagging, random forests, glmnet, decision trees, neural networks), comprehensive analytics, and thorough documentation.
Authors:
RTextTools_1.4.3.tar.gz
RTextTools_1.4.3.zip(r-4.5)RTextTools_1.4.3.zip(r-4.4)RTextTools_1.4.3.zip(r-4.3)
RTextTools_1.4.3.tgz(r-4.4-x86_64)RTextTools_1.4.3.tgz(r-4.4-arm64)RTextTools_1.4.3.tgz(r-4.3-x86_64)RTextTools_1.4.3.tgz(r-4.3-arm64)
RTextTools_1.4.3.tar.gz(r-4.5-noble)RTextTools_1.4.3.tar.gz(r-4.4-noble)
RTextTools_1.4.3.tgz(r-4.4-emscripten)RTextTools_1.4.3.tgz(r-4.3-emscripten)
RTextTools.pdf |RTextTools.html✨
RTextTools/json (API)
# Install 'RTextTools' in R: |
install.packages('RTextTools', repos = c('https://lorenc5.r-universe.dev', 'https://cloud.r-project.org')) |
- NYTimes - A sample dataset containing labeled headlines from The New York Times.
- USCongress - A sample dataset containing labeled bills from the United State Congress.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:95f6a1b20b. Checks:OK: 9. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win-x86_64 | OK | Nov 12 2024 |
R-4.5-linux-x86_64 | OK | Nov 12 2024 |
R-4.4-win-x86_64 | OK | Nov 12 2024 |
R-4.4-mac-x86_64 | OK | Nov 12 2024 |
R-4.4-mac-aarch64 | OK | Nov 12 2024 |
R-4.3-win-x86_64 | OK | Nov 12 2024 |
R-4.3-mac-x86_64 | OK | Nov 12 2024 |
R-4.3-mac-aarch64 | OK | Nov 12 2024 |
Exports:classify_modelclassify_modelscreate_analyticscreate_containercreate_ensembleSummarycreate_matrixcreate_precisionRecallSummarycreate_scoreSummarycross_validategetStemLanguagesprint_algorithmsread_datarecall_accuracysummary.analyticssummary.analytics_virgintrain_modeltrain_modelswordStem
Dependencies:BHbitopscaToolsclassclicodetoolsdata.tablediagramdigeste1071foreachfuturefuture.applyglmnetglobalsiprediteratorsKernSmoothlatticelavalistenvMASSMatrixNLPnnetnumDerivparallellyprodlimprogressrproxyrandomForestRcppRcppEigenrlangrpartshapeslamSparseMSQUAREMsurvivaltautmtreexml2